

A robust code for geothermal reserve and resources estimation

15 June 2007

Jim Lawles

(SKI

Chairman, International Geothermal Association Committee on Reserves and Resource

Acknowledgements

- > Geoscience Australia and SKM have provided funding
- > Technical contributions from:
 - o Tony Menzies
 - o Jim Randle
 - Allan Clotworthy
 - o Graeme Beardsmore
 - o Fiona Holgate
 - o Greg Ussher
 - o Constructive comments from many others

Background

- > In Australia the AGEG is taking a lead role in defining a code for reporting of geothermal resources and reserves
- > An initial seminar has been held, a draft discussion paper produced, further discussion at HDR conference
- > Intention is to have a code in place by end 2007
- > Parallel activities:
 - o IGA committee to produce agreed approach by April 2008
 - TSX forming working party now
 - o NZGA supportive, want to apply agreed methodology to new national assessment
 - o USGS doing national inventory, liaising with

Why: Having Sound Reserves Definitions is Increasingly Important For Geothermal

- > Lenders and stockmarket investors
 - Traditional requirement for resource potential analysis
 - Increasing numbers involved in geothermal financing
 - Quantifying Resource and Project Value through the development cycle
- New technologies and resources emerging
 - o HDR, HFR, EGS, low temperature

Scope

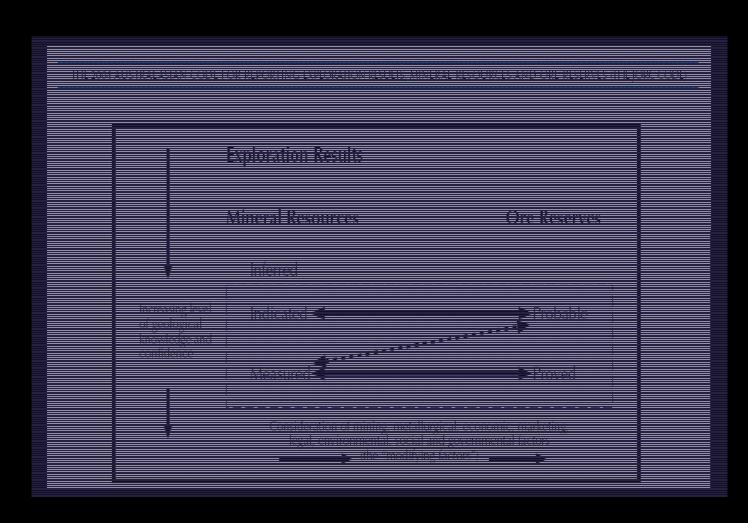
- > "Conventional" geothermal projects in other countries
- > Existing projects as well as green-fields
- > Need to allow for energy already extracted
- > Temperature range 100 to 370 °C in situ
- > Focus on electricity generation not direct use
- > But methodology readily adaptable to other situations

Types of Geothermal Resource

- > Can divide into "natural" and "EGS" types, or "magmatic" and "amagmatic"
- More complex classifications possible
- > But to emphasise common factors concentrate on:
 - Presence of fluid
 - o Temperature
 - o Permeability:
 - Convective
 - Conductive

Reporting vs. Guidelines

- > Need to distinguish: definition is at two levels
- > **Guidelines** for methodology: a comprehensive outline of *preferred* methodology and default parameters, not mandatory
- > Reporting requirements: much shorter document, has minimum *mandatory* requirements
- Considerable scope left for individual judgement in how guidelines are applied
- > Relies on the professional judgement of an accountable "Competent Person", who would often be independent from the project proponent

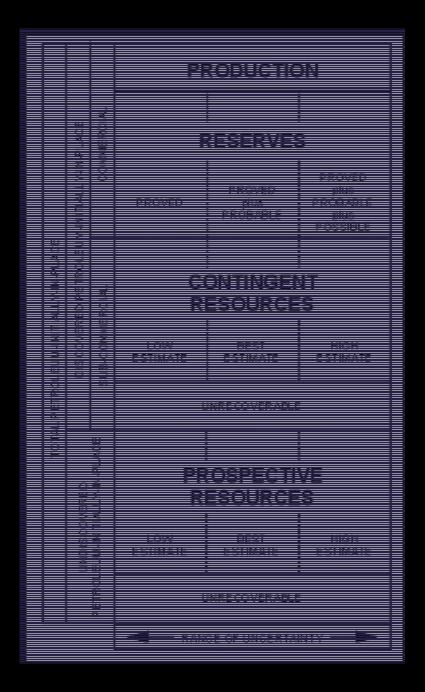


Two Dimensional Categorisation

- > "Geological" Knowledge and Confidence
 - o The resource characteristics
 - How reliably they are defined
 - Typically: "Proven Probable Possible"

- > Commercial Extractability
 - o What can be commercially extracted now
 - What may be extracted under more favourable conditions
 - o Typically:
 - Reserve = commercial
 - Resource = as yet sub-commercial

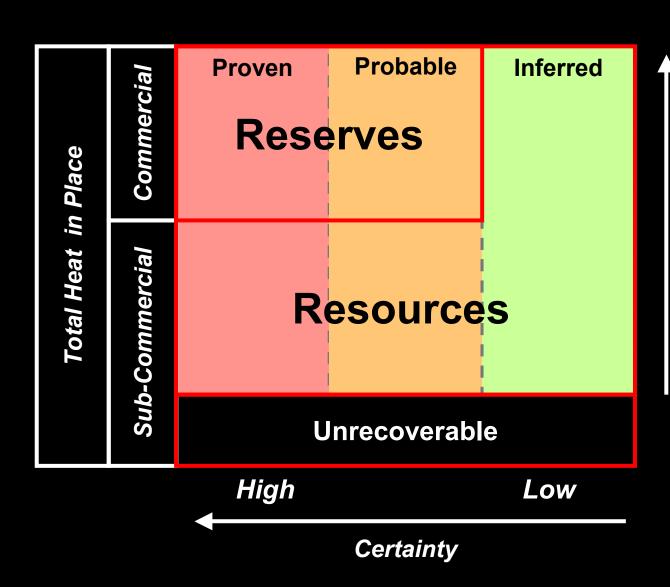
Canadian Institute of Mining (CIM) and Australian Joint Ore Reserves Committee (JORC) Code for Minerals



SPE – Oil & Gas

Special Features of Geothermal

- > Potential for recharge on a human time scale in some resources
- > Power prices are site specific
- In the case of HDR/HFR systems, may not be necessary or practical to tap all of the resource because of their vast size
- > Technology is rapidly changing



How: Proposed Approach

- > Use a 2-dimensional categorisation as in O&G and minerals
- > Draw on SPE for principles & guidelines
- > Draw on JORC for implementation and reporting code
- > Restrict use of "reserves" to commerciallyextractable resources
- > Allow a range of estimation methodologies
- > But require a certain level of definition of the methodology/assumptions in each case
 - o Relate cut-off "grade" to a specific power price and/or technology

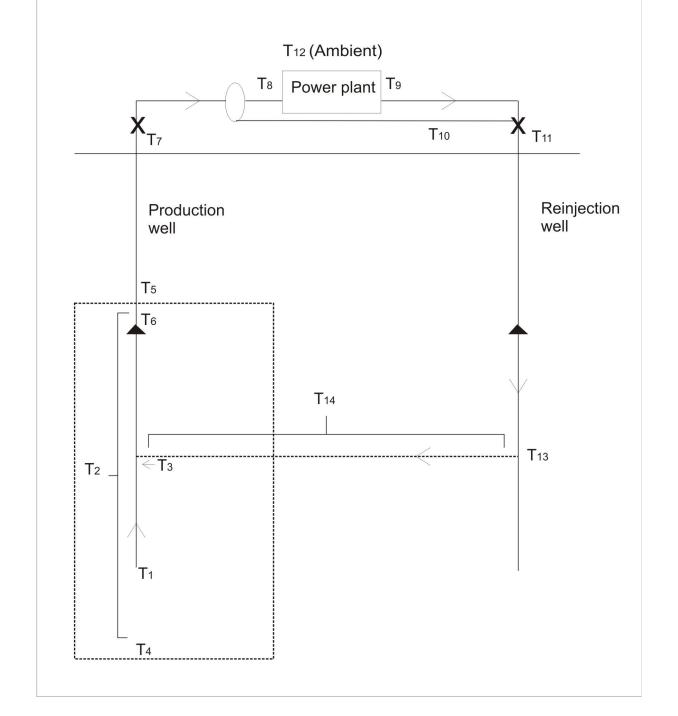
Proposed Classification

Deliverability Of Recoverable Energy

Commercial Criteria

- > Electricity has severe limitations on its transportability
- > Hence unlike minerals and oil, which have a definable international \$ value, the value is country- and even site-specific
- > This affects:
 - The economic drilling depth and hence the reservoir volume
 - o The cut off grade
 - o The plant type that is affordable and hence the efficiency

Commercial Extractability: Resources


- > Could be commercially extractable in foreseeable future
- > Technology identified, not yet necessarily economic or technically proven
- > Preference is to state resources in terms of energy in place in the reservoir and recoverable energy (heat units)
 - I do not favour only energy in place as it can lead to misleadingly large estimates
 - AGEG currently takes the opposite view
- > Optional to convert that to, say MW-years of extractable energy, but if so need to state the assumed power price and technology

Commercial Extractability: Reserves

- > Commercially Extractable in the context of a **Stated Target Type of Development**
- > Can use Well Deliverability as a practical measure
- > Define areas / volumes that are extractable
- > Define temperature limits below which deliverability would be come un-commercial —
 - the extraction Cut Off and/or Base Temperature
 - NOT necessarily the same as the plant Rejection
 Temperature or ambient temperature

Commercial Extractability: Reserves

- > Commercially Extractable in the context of a **Stated Target Type of Development**
- > But do NOT favour the JORC approach of requiring a full feasibility study before declaring Reserves

Certainty Classifications

Proven

- Sampled by wells
- Deliverability demonstrated
- "No surprises" expected in future drilling
- "Bankable Projects" need a feasibility study and PPA as well as proven reserves

Probable

- Less reliably characterised
- Temperature indicated by geochemistry or nearby wells
- Area defined by geophysics / temperature gradient mapping

Inferred

- Less direct indications of area, depth and character
- Sound reason for indicating resource geochemistry

Exploration Results

Can be less formally reported for interest but will not define resources

Correlation with Probabilistic Methods

- > Conceptually:
 - o P90 ~ Proven
 - o P50 ~ Probable
- > But not a rigorous mechanistic correlation

- Probabilistic methods readily applicable to stored heat and other static or lumped parameter methods
- > Not so easily applied to dynamic reservoir simulation

What: Guidelines for Possible Methodologies

- Not accepted except for very preliminary resource estimates
 - Surface heat flow
 - o Aggregation of well outputs
- > Possible but not favoured methods
 - o Areal method
 - o Lumped parameter models
 - o Decline curve analysis
- > Favoured methodologies for resource and reserves
 - o Stored heat calculations preferably probabilistic
 - o Numerical simulation models

Aggregation and Probability

- > Should only aggregate to lower levels of certainty
 - o e.g. probable reserves can include proven, but not vice versa
- When aggregating probabilistic resources, should not just add arithmetically
 - o e.g. the P10- P90 range of two probabilities is smaller than the individual ranges

Other Methodology Considerations

- > Accommodating recharge
- > Non-energy constraints
 - o Environmental
 - o Regulatory
 - o Access
 - o Chemistry
- > Interpolation/extrapolation
 - o Geostatistical approach?
- > Recovery factors
- > Efficiency of energy conversion / utilisation
- > Project lifetime/ sustainability

Other Issues: "Competent Persons"

> Should be:

- o Affiliated to an appropriate professional organisation
- Qualified and experienced
 - describe their background
- o Preferably independent
 - declare any interests
- o Accountable

The Way Forward

- > Agree principles and preferred approach:
 - o June-July 2007 initial meeting and follow up
- > Present to a wider audience:
 - o 1 August HDR conference obtain feedback
 - Circulate to IGA
 - Kick off TSX working party
 - o Discuss with NZGA
- > Finalise draft through AGEG
- > Present to IEA and IGA in October
- > Finalise version for ASX by end 2007

Applicability to NZ

- Major players in NZ different to Canada, Australia, USA in that Contact is the only publicly listed company
- > Not all projects funded by commercial banks
- > But new players about to enter market?
- > Even if not necessary for the markets, it would be good for NZ to have an agreed methodology for estimating resources, that conforms to international practice
- > Familiarity with the process will be advantageous to NZ companies working overseas